Smooth long-time existence of Harmonic Ricci Flow on surfaces

نویسندگان

  • Reto Buzano
  • Melanie Rupflin
چکیده

We prove that at a finite singular time for the Harmonic Ricci Flow on a surface of positive genus both the energy density of the map component and the curvature of the domain manifold have to blow up simultaneously. As an immediate consequence, we obtain smooth long-time existence for the Harmonic Ricci Flow with large coupling constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW

The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...

متن کامل

Harmonic Ricci Flow on surfaces

Let g(t) be a family of smooth Riemannian metrics on an n-dimensional closed manifold M . Moreover, given a smooth closed Riemannian manifold (N, gN ) of arbitrary dimension, let φ(t) be a family of smooth maps from M to N . Then (g(t), φ(t)) is called a solution of the volume preserving Harmonic Ricci Flow (or Ricci Flow coupled with Harmonic Map Heat Flow), if it satisfies  ∂tg = −2 Ricg + ...

متن کامل

On the properties of the combinatorial Ricci flow for surfaces

We investigate the properties of the combinatorial Ricci flow for surfaces, both forward and backward – existence, uniqueness and singularities formation. We show that the positive results that exist for the smooth Ricci flow also hold for the combinatorial one and that, moreover, the same results hold for a more general, metric notion of curvature. Furthermore, using the metric curvature appro...

متن کامل

Deforming a Map into a Harmonic Map

Let X be a complete noncompact Riemannian manifold with Ricci curvature and Sobolev radius (see §6 for the definition) bounded from below and Y a complete Riemannian manifold with nonpositive sectional curvature. We shall study some situations where a smooth map f : X → Y can be deformed continuously into a harmonic map, using a naturally defined flow. The flow used here is not the usual harmon...

متن کامل

Ja n 20 09 Kähler Ricci Flow on Fano Surfaces ( I )

We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of existence of Kähler Ricci soliton metrics on toric surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2017